Solving Optimal Control Problems by Numerical Simulations: A Literature Review

Autores

  • Ranulfo Acir de Oliveira Resende Faculdade de Engenharia de Bauru - Unesp
  • José Manoel Balthazar

Palavras-chave:

Dynamic Optimization, Optimal Control, Dengue, Modelica, Aedes Aegypti.

Resumo

Este artigo apresenta uma breve revisão da bibliografia relacionada à aplicação de simulações numéricas na solução de problemas de controle ótimos (OCP). Revisamos conceitos básicos, tais como os teoremas de existência e as condições suficientes para a otimização, no que diz respeito à otimização aplicada à engenharia de controle, bem como as principais regras relacionadas às simulações numéricas. O trabalho é baseado em pesquisas da literatura relevante publicada sobre o tema, a partir dos livros e artigos clássicos, e abrange as obras mais citadas na atualidade. Os resultados desta revisão sugerem que há uma falta de métodos numéricos para resolver OCP. Estes métodos parecem não fazer uso dos principais conceitos teóricos desenvolvidos nos últimos anos e, igualmente, parecem não explorar o poder computacional moderno. Este trabalho contribui para o conhecimento principal sobre o assunto, sugerindo que a melhor exploração do poder das simulações numéricas para resolver OCP, com o uso de métodos mais adequados, pode resultar em soluções de OCP muito relevantes, que são de grande interesse em sistemas de engenharia e até mesmo biológicos.

Referências

ÅKESSON, J. et al. Modeling and Optimization with Optimica and JModelica.org---Languages and Tools for Solving Large-Scale Dynamic Optimization Problems. Computers and Chemical Engineering, v. 34, n. 11, p. 17371749, 2010.

ANCONA, F. et al. (EDS.). Geometric control and nonsmooth analysis. In honor of the 73rd birthday of H. Hermes and of the 71st birthday of R. T. Rockafellar. Proceedings of the conference, Rome, Italy, June 2006. [s.l.] Hackensack, NJ: World Scientific, 2008.

ANDERSSON, J. et al. Integration of CasADi and JModelica.org. 8th International Modelica Conference 2011. Anais...Dresden, Germany: 2011Disponível em: <http://www.control.lth.se/documents/2011/and+11mod11.pdf>

ATHANS, M. Optimal control an introduction to the theory and its applications. New York: Dover Publications, 2007.

BANI-HANI, K.; GHABOUSSI, J. Nonlinear structural control using neural networks. Journal of Engineering Mechanics-asce, v. 124, n. 3, p. 319327, 1998.

BAZARAA, M. S.; JARVIS, J. J.; SHERALI, H. D. Linear Programming and Network Flows. [s.l.] Wiley, 2009.

BAZARAA, M. S.; SHETTY, C. M. Nonlinear Programming: Theory and Algorithms. [s.l.] Wiley, 1979.

BERTSEKAS, D. Dynamic programming and optimal control. Belmont, Mass: Athena Scientific, 2005.

BEWLEY, T. R.; TEMAN, R.; ZIANE, M. A general framework for robust control in fluid mechanics. Physica D, v. 138, n. 34, p. 360392, 2000.

BONNARD, B.; CHYBA, M.; SUGNY, D. Time-Minimal Control of Dissipative Two-Level Quantum Systems: The Generic Case. Ieee Transactions On Automatic Control, v. 54, n. 11, p. 25982610, 2009.

BRYSON, A. Applied optimal control. City: Hemisphere, 1975.

CELLINA, A.; COLOMBO, G. On a classical problem of the calculus of variations without convexity assumptions. Annales de linstitut Henri Poincaré (C) Analyse non linéaire, v. 7, n. 2, p. 97106, 1990.

CESARI, L. An existence theorem without convexity conditions. SIAM J. Control, v. 12, p. 319331, 1974.

CESARI, L. Optimization - theory and applications. Problems with ordinary differential equations. [s.l: s.n.].

CHESI, G. et al. Solving quadratic distance problems: An LMI-based approach. Ieee Transactions On Automatic Control, v. 48, n. 2, p. 200212, 2003.

CHOI, K. M. et al. Semi-active fuzzy control for seismic response reduction using magnetorheological dampers. Earthquake Engineering & Structural Dynamics, v. 33, n. 6, p. 723736, 2004.

CIMEN, T.; BANKS, S. P. Global optimal feedback control for general nonlinear systems with nonquadratic performance criteria. Systems & Control Letters, v. 53, n. 5, p. 327346, 2004.

CLARKE, F. A general theorem on necessary conditions in optimal control. Discrete Contin. Dyn. Syst., v. 29, n. 2, p. 485503, 2011.

CLARKE, F. Functional analysis, calculus of variations and optimal control. [s.l.] London: Springer, 2013.

CLARKE, F. H. Optimization and nonsmooth analysis., 1983.

DE ANDRADE MARCONI, M.; LAKATOS, E. M. Fundamentos de Metodologia Científica. [s.l.] ATLAS - GRUPO GEN, 2010.

DING, Y.; JIA, Y.; WANG, S. S. Y. Identification of Mannings roughness coefficients in shallow water flows. Journal of Hydraulic Engineering-asce, v. 130, n. 6, p. 501510, 2004.

ECO, U. Como se Faz Uma Tese (Em Português do Brasil). [s.l.] Perspectiva, 2007.

ERKUS, B.; ABE, M.; FUJINO, Y. Investigation of semi-active control for seismic protection of elevated highway bridges. Engineering Structures, v. 24, n. 3, p. PII S0141-0296(01)00095-5, 2002.

ESTEVA, L.; YANG, H. M. Mathematical Model to Assess the Control of Aedes Aegypt Mosquitoes by the Sterile Insect Technique. Mathematical Biosciences, 2005.

FRANKLIN, G. F. et al. Feedback and Control of Dynamic Systems (Addison-Wesley series in electrical and computer engineering). 2nd. ed. [s.l.] Addison Wesley Longman Publishing Co, 1991.

FRANKLIN, G. F.; POWELL, J. D. Digital Control of Dynamic Systems. [s.l.] Addison Wesley, 1980.

HOUSKA, B.; FERREAU, H. J.; DIEHL, M. An auto-generated real-time iteration algorithm for nonlinear MPC in the microsecond range. Automatica, v. 47, n. 10, p. 22792285, 2011.

IACOVIELLO, D.; STASIO, N. Optimal control for SIRC epidemic outbreak. Computer Methods and Programs in Biomedicine, v. 110, n. 3, p. 333342, 2013.

ILZHOEFER, A.; HOUSKA, B.; DIEHL, M. Nonlinear MPC of kites under varying wind conditions for a new class of large-scale wind power generators. International Journal of Robust and Nonlinear Control, v. 17, n. 17, p. 15901599, 2007.

JOO, Y. H.; SHIEH, L. S.; CHEN, G. R. Hybrid state-space fuzzy model-based controller with dual-rate sampling for digital control of chaotic systems. Ieee Transactions On Fuzzy Systems, v. 7, n. 4, p. 394408, 1999.

KIRK, D. Optimal control theory; an introduction. Englewood Cliffs, N.J: Prentice-Hall, 1970.

KOCHE, J. C. Fundamentos de Metodologia Científica. Teoria da Ciência E Prática Da Pesquisa (Em Português do Brasil). [s.l.] Vozes, 2009.

LENCI, S.; REGA, G. Optimal control of homoclinic bifurcation: Theoretical treatment and practical reduction of safe basin erosion in the Helmholtz oscillator. Journal of Vibration and Control, v. 9, n. 34, p. 281315, 2003.

LI, C.; FENG, G.; LIAO, X. Stabilization of nonlinear systems via periodically intermittent control. Ieee Transactions On Circuits and Systems Ii-express Briefs, v. 54, n. 11, p. 10191023, 2007.

LIN, F.; ZHANG, W.; BRANDT, R. D. Robust hovering control of a PVTOL aircraft. Ieee Transactions On Control Systems Technology, v. 7, n. 3, p. 343351, 1999.

LIU, H.; XIE, G.; WANG, L. Necessary and sufficient conditions for containment control of networked multi-agent systems. Automatica, v. 48, n. 7, p. 14151422, 2012.

LUENBERGER, D. G. Linear and Nonlinear Programming. [s.l.] Addison-Wesley, 1984.

LUO, W. C.; CHU, Y. C.; LING, K. V. Inverse optimal adaptive control for attitude tracking of Spacecraft. Ieee Transactions On Automatic Control, v. 50, n. 11, p. 16391654, 2005.

MAGNUSSON, F.; ÅKESSON, J. Collocation Methods for Optimization in a Modelica Environment. Proceedings of the 9th International Modelica Conference. Anais...2012Disponível em: <http://lup.lub.lu.se/record/2972280>

MARICONDA, C. On a parametric problem of the calculus of variations without convexity assumptions. Journal of Mathematical Analysis and Applications, v. 170, n. 1, p. 291297, 1992.

OGATA, K. Engenharia de Controle Moderno. Segunda Ed ed. [s.l.] Printice Hall do Brasil, 1993.

OGATA, K. Discrete-Time Control Systems (2nd Edition). [s.l.] Prentice Hall, 1995.

RAFIKOV, M.; BALTHAZAR, J. M. On control and synchronization in chaotic and hyperchaotic systems via linear feedback control. Communications In Nonlinear Science and Numerical Simulation, v. 13, n. 7, p. 12461255, 2008.

RAFIKOV, M.; RAFIKOVA, E.; YANG, H. M. Optimization of the Aedes aegypti Control Strategies for Integrated Vector Management. Journal of Applied Mathematics, v. 2015, p. 8, 2015.

RESENDE, R. A. O. Estudo da Dinâmica de Populações Utilizando a Técnica de Polinômios de Colocação. [s.l.] Faculdade de Engenharia de Bauru - Unesp, 2015.

SCIENCE AND TECHNOLOGY FACILITIES COUNCIL. HSL: A collection of Fortran codes for large scale scientific computation, 2015. Disponível em: <http://www.hsl.rl.ac.uk>

SHAO, J.; XIE, G.; WANG, L. Leader-following formation control of multiple mobile vehicles. Iet Control Theory and Applications, v. 1, n. 2, p. 545552, 2007.

THOMÉ, R. C. A. Controle Ótimo Aplicado na Estratégia de Combate ao Aedes Aegypti Utilizando Inseticida e Mosquitos Estéreis. [s.l.] Unicamp, 2007.

TODOROV, E. Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system. Neural Computation, v. 17, n. 5, p. 10841108, 2005.

WÄCHTER, A.; BIEGLER, L. T. On the Implementation of a Primal-Dual Interior Point Filter Line Search Algorithm for Large-Scale Nonlinear Programming. Mathematical Programming, 2006.

ZASLAVSKI, A. Nonconvex optimal control and variational problems. New York, NY: Springer, 2013.

ZASLAVSKI, A. J. Generic existence of Lipschitzian solutions of optimal control problems without convexity assumptions. Journal of Mathematical Analysis and Applications, v. 335, n. 2, p. 962973, 2007.

ZHOU, R. C. et al. Suppression of Nonlinear Panel Flutter With Piezoelectric Actuators Using Finite-element Method. Aiaa Journal, v. 33, n. 6, p. 10981105, 1995.

Publicado

2020-02-21

Edição

Seção

Engenharia Elétrica